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ABSTRACT

A theoretical analysis of the_response of a thin cylindrical shell to a random_loading
is m defining the joint acceptance of a cylinder are derived. The
governing equafions of motfion are taken to be the Reissner shallow shell equations.
The solution gives the spectral density function of both the radial displacement and
stress function in terms of the normal modes of the cylinder and the spectral density
function of the extemal pressure field. The final equations involve an external
pressure-structural mode coupling tem similar to the joint acceptance as defined by
Powell, which then serves as the basis for defining the joint acceptance for cylinders.
Using these equations, numerical results are obtained for the joint acceptance for a
cylinder in a diffuse sound field.
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INTRODUCTION

There is currently a growing interest in problems involving random vibration of thin cylindrical
shells. Examples of such problems are the response of a launching vehicle structure or aircraft
fuselage to random acoustic or aerodynamic loading, the response of submarine hulls to hydro-
dynamic turbulence etc.

A recent treatment of this problem was given by Cottis and Jcsonidesl, who considered the
correlation function of the radial displacement of a thin cylinder due to a purely random
pressure field and to boundary layer pressure fluctuations. Most other work in the area of
random vibration of structures has been restricted to strings 2 '3, beams 4,or plates 4,5,6 A
general analysis of these problems has been given in a formal manner by Powell 7,who intro=
duced the notion of joint acceptance.

The theoretical analysis which follows utilizes the Reissner shallow=shell equations 8,05 applied
to cylindrical shells by Cottis and Jasonides, except that no hysteretic damping term was
included. The analysis departs from that of Cottis and Jasonides in that the two simultaneous
differential equations of motion for the cylinder radial displacement and stress function are
written as a single matrix equation, instead of obtaining a single differential equation for the
radial displacement by differentiation and elimination. Also, the analysis was concerned with
finding the spectral density function, rather than the correlation function, of the desired
quantities,

The solution gives the spectral density functions of both the cylinder radial displacement and
stress function in terms of the normal modes of the cylinder and the spectral density function of
the external pressure field. The final equations involve an external pressure - structural mode
coupling term similar to the joint acceptance as defined by Powell. The joint acceptance for
the cylinder is then defined in terms of this quantity .

Using the equations derived in the text, numerical results were obtained for the joint accept-
ance of a simply supported cylinder in a diffuse sound field (i.e., a field in which sound waves
impinge on the cylinder from all directions with random phase and with intensity independent
of direction). The calculations utilized the formula for the surface pressure spectral density
function for the cylinder in a diffuse field which was obtained by the author in a previous
paper?, and the results, for the first few cylinder mode shapes, are plotted in Figures (2) and
(3). Also plotted were asymntotic expansions for the joint acceptance which were derived
assuming large longitudinal mode number and large frequency.

THEORY

Consider a thin cylindrical shell of radius a and length £. Lettinga == be the coordinate
along the length of the cylinder and B the angular coordinate around the cylinder, the Reissner
equations for the vibrating cylindrical shell can be written in the form



2
0W+dv§/+2 V4w+ | a_tz-p(a, p,f)
4 3 2
a a da (1)
2
] dw 1 4
_3.__2- v ¢_OI

a da Eha4

where w (a, B, t) is the lateral displacement of the middle surface, ¢ (a, B, t) is the stress
function, p (a, B, t) is the loading on the surface of the cylinder, and the dot refers to
differentiation with respect to t. Equations (1) can be written in matrix form as follows:

oJW+dJW+ IW=-P

(2)
10 w fp
. where J= >,W:(), P=<>;
00 ¢ 0
and the differential operator L is given by
D4 1 @
L = 04 ’ 03 0 2
121
o 3’  Eha
ifpla, B, t)is of the form
. iwt
pla, B, N=ql,Be
then, assuming a solution of (2) of the form
iwt
Wi, B, t)=U(@, B) e‘w ;
equation (2) becomes
(NJ-LU=F, 3)
where f=(g) and N = ow 2. iwd. Letting f = 0 we obtain the homogeneous form of (3):
(NJ-LU=0. (4)

Assuming that the cylinder is simply supported at the ends, i.e., at z=o0and z =4, solutions
N mn+ Ymn of (4) can be obtained in the form

Umn = /Cmn ¢mn (al B)I



wheren=1,2, ...... ,m=0,+ 1,4+ 2, . ..... » P (a,[3)=¢§sinkna eImB

4
1 D 2 2 2 Ehkn
A = —— — (m + k ) + ,
mn 2 2 n 2 2 2
a a (m + k )
n
anda andb are solutions of
mn mn
2

2
D 2 2 n _
[A mn - ? (m * kn) ] amn+ ? bmn B O

2
w2+ %) b =0
n mn

~
wl: N

a +

mn Eho4

o]

the presence of longitudinal stiffeners and/or ring stiffners can be accounted for by addition-

al restrictions on m and n. Here the functions ®mn (@, B) are chosen so that they are ortho-
nomal i.e., so that the inner product

2n a
CHRRIIEN I - P S g

[o] o

{] form=m', n=n'

0 otherwise

where the (*) denotes complex conjugate. Also A and b are chosen so that

The general solution of (3) in terms of normal modes can now be obtained as follows: Assume a
solution of the form

U =n§n dmn Umn :n.% dmn Cmn q’mn ! (6)



when the dmpn's are undetermined coefficients. Then

AJ-DU=Y d 0J-LU =

m, n

Zd ANJ=-X__J+x J-DU =
mn mn m

m,n mn n

rgn dmn ™ ">‘mn) J Umn (7)
since

(xan-L)umn =0.

Now, assuming that the an's form a complete ortho-normal sequence, we can set

q(a, B) =n§‘ @, e (a, ) =
1
E G—— (CPmn, C]) amn ¢mn (ql B)I (8)
m,n mn
so that
@, q)
f=)y, =0 Ju 9)
mn 9 mn
Equating (7) and (9) we obtain
@ ,q)
4 =10 . 10
mn cmn (N - )\mn) (10)

Setting U (a, B) = (g 52: g;) » and substituting (10) into (6) gives

where =22 is obtained from 5).
9mn



For purposes of random analysis it is necessary to obtain the Green's function for equation

(2), i.e., the solution G (@, B, a', B', t) of

oJé+dJG+LG=('8(°"°';)B'B')8(f)) (12)

A
where & refers to the Dirac delta-function. Letting G be the Fourier transform of G with
respect to the variable w, we obtain, by taking the Fourier transform of both sides of (12),

L A_ 1 (S@-o,p-B)
MJ-1)G= \/5;( : ) (13)

JAY

G G
_ 2 . w A [ Tw (e .
where A = gw” - iwd. Letting G = , G=| A" )] , we have, utilizing the previous
Gq) Gq)

solution given by (11),

¢* (ull ﬁl)
Y 1 mn
G = @, B)
w 2w o A - )\mn q’mn B
(14)
A 1 ¢r @, p")
Gy = 5 M — ¢ f(a,8),
¢ ﬁ'm,n mn A )‘mn mn
b Ehak
where M = =~
mn a . 2 2 2
(m +kn)

Taking the inverse Fourier transform of (14) yields the desired Green's function. The solution
of (1) is then written in terms of Green's function in the form

we,B,t) = ffzbf @, B, a', B, t-t)p@,p, t)da dB' d 1,
(15)
t w a
¢ (G/B’ f) = _ f 6[2 f G¢ (QIBI GIIB',f-f')P(C!', B',fl)dﬁ'dﬁldf' .

Equations (15) can be used to obtain the cross spectral densities for the functions w and ¢.
Robson 10 exhibits a method for computing the cross spectral density of the response in terms of
the cross spectral density of the forcing function and the associated Green's function, which,



when applied to the present problem, gives the following formulas for the cross spectral
densities S, (a, B, a', B', w) and S‘:p (a, B, o', B', w) of w and ¢:

SW (al Bl a'l ﬂll U) =

2n ;2 ohfo dfa n
x [ ] f Gy (o B oy Byoo) 6, (a0 By By o) S, (o, By, o By
[o] (o] [o]

o]
da, da, dB, dB,

S (I I’ Il l,u):
o a, B, o', B 16

21 21 oh/a f/a N N
27 I f ! OJJ G$ (a, B, o B],u) G¢P (o', B', a, [32,@) Sp (a], B], Y Bz,w).

o (o]

da] da2 dB] de /

where Sp (c] , B] Y '[32, w) is the cross spectral density of p (a, B, 1). Substituting (14) into
(16) we obtain finally

Sw(al BI qlI B'Iw)z

2n 2n a a
I’T%'l mz|,:n| j j . SP (0] ’ B] ’ 02; lew)cpmn (a.l ’ B])¢m.n| (02, B2) ddldq2dﬂ| dﬁz -
' o o o 5

Orn (@ Ble , . (a' B) -
75 W Z @ )
mn mn

Sq> (a, B, a',0) =
2r 2w a a
m% m;nl f J SP (G] ’ [3] ’ a2l 62 /“) ¢mn (C’] ’ B])¢;:1lnl (021 Bz) da] daz dB] de .
o o o o

FmnPm'n!

Z* (w)Z (w) q>m*n (a, B) ct’m'n' (a', B, (18)




| /
where Zrnn (W)=X=X\ n The quantity inside the square brackets in (17) and (18), when
divided by the pressure power specfrum, is defined to be the cross-joint acceptance squared

for the cylinder Lefhan (u) be the quantity in square brackets in (17) and (18), we have,
settinga = — ond Iefhng 6= B,

m'n' ! | Z z' ' ] 1
Yo @)= -, Jj rsw 2,0, 2, 0)g €, 0)qn, &,0)dzdr B0

(19)

where $(®, z, 0", z',w) = Sp (a, B, a', B', w). Substituting for P and ¢
becomes

(19)

n'

2n /

£
Jmn(w _"‘0[ J' j I s@, z,0°, AU)smI—-“Z smnl z' |(me me)d dz'do do.

o o (o]

(20)

Cylinder in Diffuse Field

We assume now that the cylindrical shell in question is a section of an infinitely long cylinder
which is subject to a three-dimensional diffuse sound field, i.e., one in which plane waves
impinge on the cylinder from all directions with random phase, and with intensity independent
of direction. The surface pressure spectral density function for this case has been obtained by
the writer? in the form

n
. 3
S(6,¢,w= TTP2 (W) f cos y cos (k€ siny)-

-
2
. @
Jo (2k a cos ysin§8)+v§° ev hv (kacos y) cosv &} dy, (21)
where §=6-0",L=2z-1z2', and P2 (W) is the pressure power spectrum,

Substituting (21) into (20), and setting m =m' and n = n' we obtain, after interchanging orders
of integration,



(o]

w
2 2n 2on f
Jmn W)= P W) f cos y f f J'lcos (k€ siny) 3J (2kocosysin18) +
_Tr S . 0 ° 2
2

f evhv (kacosy) cos v8£sin %1-' z sin;—"z' eim8 dzdz'd6dé'| dy.
V=0

Assuming that the infinife series converges uniformly, this can be written

Jmn P (@) e Lg)eim®
(W) f cosy! f J°(2|<ccosysin38)e do do'.
8

©
. . nm o oam .
![ f cos (k {siny) smz- zsun?-z dzdz +VZ=:° evhv (k acos y).

o

Letting

m_ " 1., imé
= f f J (2kacos ysins8) e d8do',
m 2
/
|(2) JJ cos (k € sin y) sin %‘ Z sin nl—“ z' dzdz',

2N @271 "
f! cosv8e d9 do' ,

o

(23) can be written

n
2
Jmn(u)=P(w) f I(Z)cosy r(n] % kacosY)I()
2

dy.

(22)

27 L2n ‘6 .
f J cosvS e M do do cos (k€ sin y) sin %E z sin %: z' dzdz' dy. (23)
o

(24)



The three integrals I(]) I(Z), and I( )

can each be evaluated most readily using a coordinate
transformation, the nature of whnch is best illustrated by an example. Choosing I( ) (n>0) as

the integral to be evaluated, we make the following successive coordinate fransformohons.
1 1 1 — L) ]
v ZZ (z'-2), v —Z'(z +z),

and

uv=u' -1 , v=v'

which maps the square in the z, z' plane into the diamond shaped region in the u, v plane as
shown in Figure 1.

p e !

/)

{

. L
<

Figure 1.  Transformation of Coordinates.

(2)

Then with respect to the u, v coordinates, |n can be written

2
If‘z) = i ﬂ'cos(x v) [cos nv - (-1)" cos nu] dudyv, (25)

4w~ D

N

k
where « = -1% sin y. Integrating first with respect to u, (25) can be written

2 0 - |v
Ir(12) = Lé COsK VvV f cos nv - (-l)n cosnu] dudv =
4n -@-|v|)

2

n

ﬂ
ﬁ ! [n - V) COs xV cos nv +%cos KV sin nv] dv. (26)

The second integral in (26) can be evaluated by means of tables to yield finally



2
|(2)=—7£ 2" 22[] —(-1)n cosm]. (27)

n 1r2 (2 - n?)

By means of similar transformations, I( ) and I( ) are evaluated to yield
LA
() m (2
lm = 8n(-1) J Jo(2 kacosycosy)cos 2mypdy (28)
& = a?s (29)

vm

where Svm is the Kronecker delta. Making use of the idenﬁfy”

X

2
=Xy g2
f Jo(22c059) c052m9d9—2( 1) Jm(z), (30)

(o]

equation (28) can be written
l(” J (kacosy) - (31)

Substituting (27), (29), and (31) into (24) gives

Jmn (u)_= 20 fP e f cos y 1-(-))” c<2>sx1r [41r2J2 (kacosy) +
mn w o[ -n (x -n2) m
2
2112 € h (kacosy)| d (32)
m m 14 L

which becomes, after substituting for « = -k;lsin y and setting p=£/a,

n
2
2 (°)=8"4pn2 f cos ¥ ]-(-])ncos(pkasiny)'
Jn L
L [ . 2 22
2 (pk asin y)" = n "]

10



2 1
[ Jm (k acosy) +-2' € hm (kacosy) {dy (33)

(W)
P2 )

where jr: W) =

n is the joint acceptance squared.

2
Using equation (33), an asymptotic expansion for jmn for large n and large ka can be obtained

as follows: Making the substitution x = (uka/n) sin y, (33) can be written

2 1r2 o
i @)= x” f f () K (x) dx (34)
o o
where X, = pka/mm,
n
8 1-(=1) cosnmx for0< x< o, x# 1
_ 22 2 2 =
fn(x)- " x= -1
1 forx=1

and

K_m(x) = e hm <kcv1 - (x/xo)2 )+ 2J§‘<k041 - (x/xo) )

We note that the function fn(x) is continuous for 0 < x <+ o, Fn(l) =1 forall n, and for all
x #1 fn(x)—-> Owith increasing n. We expect, therefore, that for large n and for x> 1

only those values of x near x = 1 will contribute significantly to the integral of equation (34).
Accordingly we write, for x°> 1,and 0< €< 1,

"o 1-¢
I fn(x) Km(x) dx = J fn(x) Km(x) dx +
o
f]+e fxo
) fn (x)Km(x) dx + 2, fn(x) Km(x) dx . (35)

Making use of some trigometric identities, we can write

1



fl+e 16 fHe sin n%(x-l)
fn(x) km(x) dx = 2 7 I —— Km(x) dx,

1-¢ ntT J-€ 2
X

which becomes, after a change of variable,

2
1+e +e sin n-u
f fn(x)Km(x)dx=34— f —'—Z'—Km(]+u)du- (36)

2 2
1-¢ nm e u2(]+-;-)
Since Km (1 + u) is analytic for |u|$ € <1, we can write
Km(l+u)=o°+o]u+02u2+......, (37)
where a =K (1) etc., while for |u| < ¢
o m
]2=]-u+%u2+.... (38)

(1+3)

Substituting (37) and (38) into (36) gives

f]+e 400 +e sin2 n%u
fn(x)Km(x) dx 55 j' — du +

IR nmw =€ v
4 3 +e +e
- (4.0 -a,-a, f sm n> T odut —— 2 3 f v g(u sm niu du, (39)
n“m Ze ™ e

where g(u) is regular in the interval [- €,+ €] . Making another change of variable, the first
term on the right hand side of (39) can be written

2 = are
4a +€e sin n=u 4q 2 .2
o J‘ » 2 du = —2 f sin_u' d' =
22 2 AT 2 7
nm ~€ U o u'
400 sinzu' @© sin2 !
e [ _.__U W =
— fo ] du f 2 du
° ") nwe U

12



sin !

4a° . foo) 2

rrall Bl f —7 (40)
nwe u'

2

Now the second term in the brackets on the right hand side of (40) is of order nle , while the

second and third terms on the right hand side of (39) are of order <. therefore we can write

finally "‘2,
1+e 2a
FOOK () de = —2 +0’( ] ) . @’(i?_). @
=€ n e n

Turning now to the remaining two terms on the right hand side of (35), and noting that Km(x)
is bounded for x> 0, we can write

) -€ 16 -€ IK (x)l
f fn(x) Km(x) d< | < > 5 I 0 dx <

S nm (x2- 1)2

16M f"e d . _l6M

22 2 - 2 !

nw o (1-x) n e

where M = max |K (x) Therefore,
x20 m

] -¢ .

f F K (x) dx = @’(T) (42)
S n e

In a similar manner, it can be shown that

X

f ° F (0K (x) o = (9/(—;—) . (43)

1+e n e
Substituting (41), (42), and (43) into (35), and taking € to be fixed, we obtain finally

X

fo F 0K () dx=-2;2 ¥ @/(—‘5)

o

so that, from (34),

13



2 ‘
i @) = 1;: [‘i‘ K, (1) +& (ﬁﬂ (44)

Now for X, >>1,

~
Z
1]
m
=
3
~
Q
]
Id
S
+
N
—
I N
. X
Q
]
’xl_,‘
g
N
(]

€ h (ka)+2J (ka),

(45)
while for large ka it can be shown, by substituting the asymptotic expansions
I () = nic ska-m3 -3
;J;io— (ka - m =5 - —)
into the formula for hm (ka), that
h ko) = =& sin? (ko -m X -3). (46)

Substituting (45), (46), and the asymptotic expansion for Jm(ka) into (44) we obtain finally

the following asymptotic expressions for jrin(u), valid for large n, large ka, and pka/nm >> 1:

2
i2 w= & [1 + cos? (ka -ﬁ)],
2 2n,2 “
i2@=2 & mo

Using equation (33), numerical calculations of the joint acceptance were made for the first few
modes of the cylinder, assuming p =2, and the results plotted in Figures (2) and (3). Also,
plotted were the asymptotic expressions A (ka) and A;(ka), where

_ 2m 2 2 L
Ao(ko) = (ro) 1+ cos (ka - Z)

A ka) =2 @
a) =2 &

14



Referring to the figures, it can be seen that, although they were derived assuming that n is
large, the asymptotic expressions Ao (ka) and A (ka) give a good approximation to ifm (w)

even for n=1 and kaz 2.

It also might be pointed out that the asymptotic behavior of a cylinder in a diffuse field
differs from that of a flat plate in that only the cylinder radius, and not the length, appears
in the asymptotic expression, while for a flat plate one would expect both the length and
width of the plate to appear in the asymptotic expression in a more or less symmetric manner.
This indicates that one should exercise a certain amount of caution when analyzing a cylinder
by, in effect, unrolling it into a flat plate.

15
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Figure 2. Joint Acceptance for Cylinder in Diffuse Field (m =0, p=2)
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Figure 3. Joint Acceptance for Cylinder in Diffuse Field (m =1, p = 2).
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